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This paper reports an investigation of the active control of sound radiation from
vibrating surfaces by using arrays of discrete actuators, or tiles, which cancel local volume
velocity. The radiation of sound can be controlled by reducing the vibration levels on the
structure and by changing its radiation efficiency. Reductions in vibration level are shown
to be purely a function of the number of tiles per structural wavelength. Reductions in
radiation efficiency are shown to be dependent on the relationship between the acoustic
wavenumber in the fluid, the structural wavenumber on the vibrating surface, and the size
of the tiles. It is also shown that there are three distinct regions of control. In the first region
of control the acoustic wavelength is larger than the structural wavelength and large
reductions in radiation efficiency are possible as long as there are at least two tiles per
structural wavelength. In the second region of control the acoustic wavelength is smaller
than the structural wavelength but is still more than twice as large as an individual tile.
Control in this region is greatly improved if the tile size is reduced. In the third region half
an acoustic wavelength is smaller than a tile and no reduction in radiation efficiency is
possible. In the third region, attenuation is possible only by reducing the overall vibration
level. The cancellation of local volume velocity by using small acoustic sources placed on
or close to the vibrating surface is also considered and is shown to achieve even higher levels
of attenuation in the radiated sound power than for tiles which cover the entire surface.
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1. INTRODUCTION

The active control of sound radiation from vibrating surfaces has attracted great academic
interest in recent years [1–6]. Much of the published work has been concentrated on
radiation from simple structures such as beams or plates and in general the frequencies
of interest have been relatively low. However, if the size of the structure is large compared
to the size of an acoustic wavelength many secondary sources and many error sensors will
be required to achieve good attenuation. In such circumstances it is unlikely that fully
coupled multichannel control systems would be used since the computational load would
be excessive.

One method of controlling the sound radiation from a structure which is large,
compared to an acoustic wavelength, is to cover the radiating surface with arrays of active
components or ‘‘tiles’’ (see Figure 1) which alter the vibration of the surface. Each tile acts
on local information such as local velocity or pressure and produces a purely local reaction.
For this control method one assumes that the control systems operating on each tile are
sufficiently uncoupled from one another to allow the control systems to remain stable. This
paper presents a general analysis of the mechanisms involved in this control strategy and
outlines the physical limitations of such a method of control. Specific tile design will not
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Figure 1. Controlling the radiation from a vibrating surface by using a number of locally acting tiles.

be taken into account and only a few basic assumptions about the behaviour of the tiles
will be made. The tiles are assumed to be light compared with the equivalent surface area
of the structure and small enough to be rigid. It does not seem sensible to design tiles that
are stiff and heavy as compared to the structure since in that case it would probably be
more effective simply to stiffen the structure.

There are two mechanisms by which a reduction in the sound power radiated from a
surface can be achieved: (i) vibration reduction and (ii) radiation efficiency reduction. If
a vibrating surface is covered with rigid tiles which are driven so as to cancel their local
volume velocity, then the sound power radiation can be reduced by both of these
mechanisms. This paper is concerned with the control of sound radiation from
harmonically excited baffled beams and plates. For this analysis the radiating surface of
each structure is assumed to be covered with active tiles which cancel local volume velocity
(surface integrated normal velocity). In the majority of the analysis presented in this paper
tiles which cover the entire radiating surface will be considered but the case of small
acoustic control sources placed close to the radiating surface will also be investigated. If
the tiles are rigid and cover the entire radiating surface then cancellation of volume velocity
is equivalent to cancellation of the velocity at the centre of each tile. If the tiles are rigid
then it is possible that there will be discontinuities in the displacement of the radiating
surface at the edges of the tiles. The tiles are effectively assumed to be sealed together with
a flexible membrane to prevent sound transmission from the cracks, but this is omitted
from Figures 1 to 3 for clarity.

2. REDUCTIONS IN VIBRATION LEVEL

There are three possible modes of vibration for a rigid tile. These are (i) whole body
motion (volume velocity mode) and (ii, iii) rocking (dipole type) modes along either axis
(see Figure 2). If the tiles are placed along a vibrating beam then only two modes of
vibration are possible. In this section the amplitude of the rocking modes after cancellation
of the volume velocity mode will be investigated. It is assumed that each active mount is
able to counteract the volumetric motion due to the structure (i.e., cancel the first mode)
without affecting the amplitudes of the other modes of vibration. This will be achieved
only if the actuator excites the tile symmetrically and the tiles are light enough such that

Figure 2. The three modes of vibration of a rigid tile.
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the back reaction onto the structure is small (i.e., the vibration of the structure is
unchanged after control).

2.1.     

The kinetic energy of the structure, due to flexural waves, will be taken as a measure
of the overall vibration level and is proportional to the integral of the time averaged
squared normal velocity (V). For a single frequency of excitation, V will be given by

V= 1
2 gS

=v(x, y) =2 dS, (1)

where the integral is over the entire surface S of the structure and v(x, y) is the complex
normal surface velocity. If the overall surface is discretized such that each tile is divided
into several elements, each of area DS, then the velocity can be represented as

V=(DS/2)vHv. (2)

The vibration levels and the radiated sound power will be calculated by approximating
the vibration of the surface by a number of elements, (eight elements per tile for the beam
and sixteen elements per tile for the plate). The levels of V before and after control will
be investigated to determine the circumstances in which good vibration reduction can be
achieved.

2.2.    

If a vibrating beam is covered by a number of rigid tiles, as shown in Figure 3(a), and
the normal velocity component at the centre of each tile is cancelled, then the tiles will
continue to vibrate in a rocking mode, as shown in Figure 3(b). For a given tile the relative
amplitudes of the first (volumetric) and second (rocking) modes will determine the level
of vibration reduction that will be achieved by cancelling the amplitude of the first mode.
The velocity of the ith tile at the position x along the beam can be represented by

vi (x)= ai1 c1 (x)+ ai2 c2 (x), (3)

where the velocity of the tile vi (x) is due to the amplitudes of the tile mode ai1 and ai2,
whose mode shapes are given by c1 (x) and c2 (x).

The shape for the first (piston) tile mode is given by

c1 (x)=z2/l, (4)

and the shape for the second (rocking) tile mode, for the ith tile, is given by

c2 (x)=z24/l3(x− xi − l/2). (5)

Figure 3. Rigid tiles placed on a vibrating beam before (a) and after (b) the volume velocity of each tile has
been cancelled.
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These mode shapes have been normalized such that the integrated time averaged
squared surface velocity Vi due to the ith tile is given by Vi = a2

i1 + a2
i2. It is assumed

that the amplitude of the modes for the ith tile, ai1 and ai2 are due to the integral of
the velocity of the beam under the tile multiplied by their respective mode shapes
c1 (x) and c2 (x). This implies a distributed mounting system where the motion of
every point of the structure under the tile affects its motion. The amplitudes of the
modes of the ith tile, due to the motion of the underlying structure only, are therefore given
by

ai1 =g
xi + l

xi

c1 vb (x) dx and ai2 =g
xi + l

xi

c2 vb (x) dx. (6, 7)

where vb (x) is the complex velocity distribution along the beam and the tile of length l
is positioned between xi and xi + l.

It is assumed that if a control system is employed to reduce or cancel the amplitude
of the first tile mode it will not affect the amplitude of the second tile mode. This will be
the case if the active mount actuates the tile symmetrically. Under these conditions,
the level of vibration reduction achieved will be dependent on the relative amplitudes of
the first and second modes. The total reduction in the vibration of the entire beam will
be given by the summation of the vibration level before and after control on all of the
I tiles,

Va /Vb = s
I

i=1

a2
i2 >s

I

i=1

a2
i1 + a2

i2. (8)

where Vb and Va are the levels of vibration before and after control.
Figure 4 shows the vibration reductions achieved by active tiles covering a

simply supported beam for different numbers of tiles per wavelength. The larger the
number of tiles per structural wavelength the larger the vibration reduction and about
5·5 tiles per structural wavelength are required to reduce the overall vibration level by
10 dB. It should be noted that this graph is applicable to all the structural modes of a
simply supported beam. The nth-mode will have n/2 wavelengths along the beam and
will thus require 5·5n/21 3n tiles if a 10 dB reduction in overall vibration level is
required.

Figure 4. The reduction in the level of vibration as a function of the number of tiles per structural wavelength.
Approximately 5·5 tiles per structural wavelength are required to achieve 10 dB of reduction (dotted lines).
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2.3.     

When covering a panel a rigid tile will have three modes of vibration and therefore the
velocity of the ith tile can be described by

vi (x)= ai1 c1 (x)+ ai2 c2 (x)+ ai3 c3 (x), (9)

where the three normalized tile mode shapes for the ith tile are given by

c1 =2/zlx ly , c1 =z24/l3x ly (x− xi − lx /2), c3 =z24/lx l3y (y− yi − ly/2). (10)

The dimensions of the tile are given by lx and ly and the tile is positioned from x= xi to
xi + lx and y= yi to yi + ly . The total reduction in the vibration level after the cancellation
of the amplitude of the first mode is given by

Va /Vb = s
I

i=1

a2
i2 + a2

i3 >s
I

i=1

a2
i1 + a2

i2 + a2
i3. (11)

Figure 5 is a contour plot of the vibration reduction achieved by cancelling the local
volume velocity of rigid tiles on a simply supported plate for different numbers of tiles per
wavelength in both the x and y directions. The larger the number of tiles per wavelength
the larger the vibration reduction, and 7·7 tiles per structural wavelength are required in
each direction for 10 dB reduction in vibration level. It is interesting to note that
7·71z2×5·5. Once again this graph applies to all modes once normalized by the
number of half wavelengths along each direction. The (n, m) mode of a simply supported
plate would thus require about 7·7n/2×7·7m/21 15nm tiles for a 10 dB reduction in
vibration.

3. REDUCTIONS IN RADIATION EFFICIENCY

The radiation efficiency can be defined as the ratio of the sound power radiation to the
integral of the time averaged surface velocity squared (equation (1)) multiplied by the
characteristic acoustic impedance [7]: i.e.,

s=W/rcV, (12)

Figure 5. A contour plot showing the reduction in the level of vibration as a function of the number of tiles
per wavelength in both the x and y-directions. Approximately 7·7 tiles per structural wavelength in both
directions are required to achieve 10 dB of reduction (dotted lines).
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where W is the total acoustic power output, r is the density of the fluid and c is the speed
of sound in the fluid. If the behaviour of a surface is approximated by using L finite
elements then the total sound power radiation can be calculated as

W=
DS
2

s
L

i=1

R(v*i pi ) (13)

where DS is the area of an element, R denotes the real part, * denotes the complex
conjugate, pi is the pressure at the ith element and vi is the velocity of the ith element. This
can also be expressed in vector form as [5],

W=(DS/2)R(vHp), (14)

where H denotes the Hermitian transpose, v=(v1 . . . vL )T and p=(p1 . . . pL)T. If the
pressure at the surface is due purely to the velocity of the tiled surface then the vector of
pressure p is equal to Zv where Z is an L by L matrix of self and transfer impedances and
the power can then be expressed as

W=(DS/2)R(vHZv)= (DS/2)vHRv (15)

where R is the real part of the impedance matrix relating the pressure at every element
due to the velocity of every element. If the structures are baffled and radiating into a free
field then the elements of R can be calculated analytically as [8]

Rij =
v2rDS2

4pc $sin (ka rij )
ka rij %, (16)

where ka is the acoustic wavenumber, v is the frequency and rij is the distance between
ith and jth elements.

3.1.      

To gain an understanding of the effects of cancelling the local volume velocity (first
mode) of a number of tiles which cover a vibrating surface a signal processing analogy
will be used. Figure 6 shows a continuous ‘‘signal’’ (a) in the spatial domain, x, which
represents the out-of-plane vibration of a section of an infinite beam. This signal is first
sampled (b) and then passed through a ‘‘zeroth order hold’’ to give (c). The resulting signal

Figure 6. A signal processing analogy to the measurement of volume velocity of a number of tiles on a
continuous surface.
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is an estimate of the volume velocity of the tiles and the difference (or error) between the
continuous signal and the sampled signal ((a) and (c)) will be equivalent to the residual
motion of the tiles after volume velocity cancellation. In this analogy the tiles are
not assumed to be rigid but if the tiles are small compared to a structural wavelength
then the residual motion will be mainly due to rocking and this analogy will be reasonably
good.

This process can also be viewed in the ‘‘frequency’’ or strictly the wavenumber domain
k. An infinite sine wave in the spatial domain (see Figure 6(a)) can be represented as a
pair of delta functions in the wavenumber domain (see Figure 6(d)) [9]. Sampling the signal
in the spatial domain is equivalent to aliasing [9] in the wavenumber domain (e). The
aliasing wavenumber ks is the wavenumber interval at which the spectrum is copied and
is due to the number of tiles per wavelength. If the tiles are small then the sample rate
will be large (i.e., ks will be large). The zeroth order hold acts as a rectangular window
which, in the wavenumber domain, is equivalent to multiplication by a sinc function (f)
whose period is inversely proportional to the size of the window [9] which in this case is
the size of the tile.

Figure 7(a) shows the wavenumber spectrum of the motion of a narrow simply
supported beam vibrating in the third structural mode. The wavenumber kx is normalized
by the beam length L. On an infinite beam the wavenumber spectrum would appear as
a delta function at kx L=3p but because the beam is of finite length the signal is effectively
windowed and the normalized wavenumber spectrum is convolved with a sinc function of
period 2p. The period of this sinc function is therefore dependent on the length of the
beam. A case in which the beam is covered with eight equally sized tiles is considered here.
The wavenumber spectrum of the volume velocity component of the tiles is computed as
is shown in Figure 7(b). This wavenumber spectrum is equal to the original one multiplied
by the sinc function due to the tile spacing, which has a period of 16p, causing the signal
in the wavenumber domain to vary as the product of two sinc functions with periods
depending on the size of the beam and the size of the tiles. The cancellation of volume
velocity sets the wavenumber response to zero at kx =0. Figure 7(c) shows the
wavenumber spectrum of the residual vibration of the beam after the volume velocity of
each tile has been cancelled. The main components in the wavenumber spectrum of the

Figure 7. (a) The wavenumber spectrum of the waves on a simply supported beam vibrating in the third
structural mode; maximum at 3p (dotted line); (b) the wavenumber spectrum of the volume velocity of the eight
tiles; (c) the residual spectrum after volume velocity on each tile is cancelled. Sample wavenumber at 16p (dotted
line in (b)).
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residual signal are due to differences in the amplitudes of the wavenumber spectrums of
the vibration before control and the volume velocity of the tiles (i.e., Figures 7(a) and 7(b)).

The components of the wavenumber spectrum which radiate sound will be those which
are supersonic: i.e., those with wavenumber components below ka =v/c. As the frequency
increases, if a fixed velocity distribution on the beam is assumed an increasing range of
wavenumber components will thus radiate sound [10].

Figure 8 shows a second example where the simply supported beam is vibrating in the
fourth structural mode. The maximum peak in the wavenumber domain is now at
kx L=4p. The wavenumber spectrum of the volume velocity components of the eight tiles
and the residual vibration of the beam after subtraction of this component is shown in
the lower graphs of Figure 8. Since the mode considered here is even, the wavenumber
component before control (see Figure 8(a)) tends to zero at low frequencies. After control
(see Figure 7(c)) the wavenumber component still tends to zero at low frequencies but does
so at a faster rate.

The radiation efficiency of the third structural mode on the beam before and after
control is displayed in Figure 9 (note that the wavenumber axes now have a logarithmic
scale). It should be noted that the radiation efficiency after control is proportional to the
sound power radiation after control divided by the integrated time averaged mean squared
velocity after control and hence compensates for the reduction in vibration levels due to
control. The beam is considered to be very narrow (the width is 1/1000 the length) such
that the radiation characteristics are that of a one-dimensional structure. This accounts
for the relatively low levels of radiation efficiency shown in Figure 9.

The behaviour shown in Figure 9(a) can be considered separately in three regions: (i)
below ka L=3p where the acoustic wavelength is larger than the structural wavelength and
large reductions in the radiation efficiency are achieved; (ii) the region between ka L=3p

and 13p (i.e., (16−3)p) where the acoustic wavelength is smaller than a structural
wavelength but still larger than an individual tile and small reductions in radiation
efficiency are achieved; (iii) above ka L=13p where the acoustic wavelength is comparable
to, or smaller than a tile and no significant reductions in radiation efficiency are possible.
The first region is below the main peak in the wavenumber spectrum and is strongly

Figure 8. (a) The wavenumber spectrum of the waves on a simply supported beam vibrating in the fourth
structural mode; maximum at 4p (dotted line); (b) the wavenumber spectrum of the volume velocity of the eight
tiles; (c) the residual spectrum after volume velocity on each tile is cancelled. Sample wavenumber at 16p (dotted
line in (b)).
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Figure 9. (a) The radiation efficiency of the third structural mode of the beam before (solid line) and after
(dashed line) control by using eight tiles which cancel load volume velocity; (b) also repeated for reference are
the wavenumber spectra of the beam’s velocity before (solid line) and after (dashed line) control (bottom graph).
The three control regions are separated by dotted lines at 3p and 13p.

affected by the additional zero placed at the origin by the cancellation of the volume
velocity of the tiles. The second region is between the main peak and the reflection of the
main peak about the folding frequency due to the tile size (sampling) at kx L=16p. This
division into three sections is also demonstrated by calculating the radiation efficiency
before and after control when the beam is vibrating in the fourth structural mode (see
Figure 10). For this case the first section is below ka L=4p and the third section is above
ka L=12p.

It follows from the above analysis that the size of the tiles mainly affects the size of the
second region but does not greatly affect the first region. This can be demonstrated by
comparing the radiation efficiency of a simply supported beam vibrating in the third

Figure 10. (a) The radiation efficiency of the fourth structural mode of the beam before (solid line) and after
(dashed line) control when using eight tiles which cancel load volume velocity; (b) also repeated for reference
are the wavenumber spectra of the beam’s velocity before (solid line) and after (dashed line) control. The three
control regions are separated by dotted lines at 4p and 12p.
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Figure 11. The radiation efficiency of the third structural mode of the beam before (solid line) and after control
when using four tiles (dashed line) and eight tiles (dash–dot line). The three dotted lines at 3p and 5p show the
separation between control regions for the case using four tiles and the dotted lines at 3p and 13p for the case
with eight tiles.

structural mode when it is covered with four and then eight tiles. Figure 11 shows that
only small reductions in the radiation efficiencies are achieved at low frequencies by
doubling the number of tiles used (approximately 2·5 dB). The second region of control
is, however, increased from ka L=5p to ka L=13p (i.e., (8−3)p to (16−3)p). Therefore
at low frequencies, as long as there are at least two tiles per structural wavelength,
increasing the numbers of tiles will be effective only in reducing the vibration levels but
will not strongly affect radiation efficiency. The reduction in vibration level will be
increased from 4·5 dB to 9·8 dB by increasing the number of tiles from four to eight. If
the acoustic wavenumber is such that the system is operating in the second region, i.e.,
ka Lq np and ka LQ (2N− n)p where N is the total number of tiles and n is the number
of half wavelengths in the structural mode, then an increased number of tiles per structural
wavelength will be useful in reducing the radiation efficiency.

It is interesting to note that the size of the beam does not strongly affect the nature of
the radiation from the structure before and after control. This can be demonstrated by
considering a beam operating in the ninth structural mode when covered with twenty four
tiles. This is the same number of tiles per structural wavelength as in the case of eight tiles
on a beam excited at the third mode, the results of which were shown in Figure 9. Figure 12
shows the radiation efficiency before and after control for the two cases of eight tiles

Figure 12. The radiation efficiency of the third structural mode of the beam before (solid line) and after control
when using eight tiles (dash–dot line) and the efficiency of the ninth structural mode before (dotted line) and
after control (dashed line) when using twenty four tiles. The length of the beam in the second case is taken to
be 3L for comparison. The dotted lines at 3p and 13p show the separation betwen control regions.
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Figure 13. (a) A contour plot of the wavenumber components of a plate vibration in the (3,3) structural mode;
(b) the wavenumber components of the volume velocity of an 8×8 array of tiles; (c), (d) the wavenumber
spectrum of the residual vibration after control. The dotted lines show the sample wavenumbers in both
directions.

controlling a third mode and twenty four tiles controlling a ninth mode. The length of the
beam which is operating in the ninth mode is considered to be 3L so that the wavenumber
spectra match at high frequencies. This example demonstrates that it is the relationship
between the structural wavenumber, the acoustic wavenumber and the size of the tiles
which determines the transition points between regions of control and not the length of
the beam.

3.2.      

The radiation efficiency of a plate before and after control when using a number of tiles
which cancel their local volume velocity can be viewed in a similar manner to the
reductions due to the tiling of a beam. The signal processing analogy will hold for this
case if the sampling and windowing are considered as two dimensional functions, i.e., in
the x and y directions, and hence produce wavenumber spectra which are a function of
both kx and ky . The aliasing due to sampling will occur in both the kx and ky directions
in the wavenumber domain and the radiating or supersonic components will be given by
kE ka where k=zk2

x + k2
y [10].

Figure 13(a) shows a contour plot of the wavenumber components for the (3,3) mode
of a simply supported plate of dimensions Lx , Ly . If the plate is covered by an 8×8 array
of tiles the wavenumber spectrum of the volume velocity of the tiles is shown in
Figure 13(b). The original peak in the spectrum, which is at kx Lx =3p and ky Ly =3p,
is aliased about the aliasing frequency which is shown as the dotted lines in Figure 13.
Cancellation of volume velocity again places a zero at the origin of the wavenumber
spectrum. The residual spectrum is therefore composed of a peak at kx Lx =3p and
ky Ly =3p with the largest peaks at kx Lx =3p, ky Ly =13p and kx Lx =13p, ky Ly =3p

as shown in Figures 13(c) and 13(d).
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The radiation efficiency before and after control can again be split into three sections
which will again be determined by the wavenumber of the main peak in the wavenumber
spectrum of the vibration before control, i.e., k=z(np/Lx )2 + (mp/Ly )2, and the
wavenumbers of the reflected peaks. Some of the reflected peaks have different
wavenumbers so the one with the lowest wavenumber is taken as separating
the second and third sections in the radiation efficiency plots. This is given by
k=z(np/Lx )2 + ((2N−m)p/Ly )2, where me n and N is the number of tiles across the
plate (here it is assumed that there is the same number of tiles in the x and y directions).
The radiation efficiency plots can therefore be separated into the three sections already
identified above for the case of a beam.

Figure 14 shows the radiation efficiency before and after control for a simply
supported plate vibrating in the (3,3) mode and controlled by an 8×8 array of tiles
(dash–dot line) which cancel their local volume velocity. For comparison the radiation
efficiency after control using a 4×4 array of tiles is also shown (dashed line). As for
the case of a beam the major effect of increasing the number of tiles is to extend the
second region of control. The line which divides the first and second regions of control
is at ka L= pz32 +32 1 4·2p. For the case of a 4×4 array of tiles the second and
third regions of control are divided by ka L= pz32 +52 1 5·8p. For the case of a 8×8
array of tiles the second and third regions of control are divided by
ka L= pz32 +132 1 13·3p.

Figure 15 shows the sound power radiation by a plate vibrating in the (3,3) mode before
and after control using a 4×4 and then an 8×8 array of tiles. This plot includes both
the radiation efficiency term and the vibration reduction term. Up to ka =5·8p there is an
increase in attenuation of approximately 8 dB when using an 8×8 array instead of a 4×4
array which is due to both a reduction in the vibration and a reduction in radiation
efficiency. This extra attenuation is obtained, however, at the expense of a four fold
increase in the required number of tiles. It is between ka =5·8p and ka =13·3p that an
8×8 array of tiles exhibits the most significant increase in performance over a 4×4 array
of tiles, and the 13 dB difference in performance in this frequency range is mainly due to
decreases in radiation efficiency.

Figure 14. The radiation efficiency of the (3,3) structural mode of a simply supported plate before (solid line),
after control when using a 4×4 array of tiles (dashed line) and after control when using an 8×8 array of tiles
(dash–dot line) which cancel local volume velocity. The dotted lines at 4·2p and 5·8p show the separation between
control regions for the case using four tiles and the dotted lines at 4·2p and 13·3p for the case with eight tiles.
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Figure 15. The second power radiation from the (3,3) structural mode of a simply supported plate before (solid
line), after control when using a 4×4 array of tiles (dashed line) and after control when using an 8×8 array
of tiles (dash–dot line) which cancel local volume velocity. The dotted lines at 4·2p and 5·8p show the separation
between control regions for the case when using four tiles and the dotted lines at 4·2p and 13·3p for the case
with eight tiles.

3.3.           

 

In this section the possibility is examined of using a set of small acoustic sources placed
on or near a vibrating surface to control its sound radiation. A surface mounted acoustic
source can be considered to be a small section of every ‘‘tile’’ which is driven such that
it compensates for the volume velocity of the other parts of the tile: i.e., when the vibrating
surface is flexing outwards the acoustic sources are moving inwards such that the total
volume velocity is zero. Figure 16(a) shows three small acoustic secondary sources
positioned on the vibrating surface. The velocity of the radiating surface before control,

Figure 16. Three acoustic sources which compensate for the volume velocity of a surface (a), the vibration
amplitude of the radiating surface, which includes the three acoustic sources, before control (b) and after control
(c).
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Figure 17. The wavenumber spectrum of the waves on a simply supported beam vibrating in the third
structural mode; maximum at 3p (dotted line); (b) the wavenumber spectrum of the eight finite secondary sources;
(c) the residual spectrum after control. Sample wavenumber at 16p (dotted line in (b)).

which is vibrating as the first structural mode of a simply supported beam, is shown in
Figure 16(b). Figure 16(c) shows the velocity of the radiating surface after control and
includes the three acoustic surfaces which have finite length and negative volume velocity.
The acoustic sources in this example do not modify the plate vibration but compensate
for its volume velocity. These velocity distributions can also be analysed by looking at their
wavenumber spectra. A beam vibrating in the third structural mode, which is controlled
by using eight sources, is taken as an example for comparison with the results presented
in Figures 7 and 9. The wavenumber spectrum of the beam before control, the wavenumber
spectrum of the compensating acoustic sources and the wavenumber spectrum after control
are all shown in Figure 17. In this case each source is taken to be a quarter of the size
of each ‘‘tile’’ where a tile is considered to be the section of beam that each source
compensates for. By reducing the size of the secondary source the velocity required by the
source to compensate for the total volume velocity of the tile increases and therefore the
total sum of the squared velocities (V) also increases. In the case shown in Figure 17 the
vibration after control is increased by 4·3 dB (note that the wavenumber axes have a
logarithmic scale). The radiation efficiency as a function of frequency is shown in
Figure 18(a). Figure 18(b) shows the wavenumber spectrum of the velocities before and
after control.

Compensation for the total volume velocity of the tile by using only a section of the
tile will tend to produce higher order wavenumber components but these components are
generally in a region where they do not radiate sound. The overall reductions in radiation
efficiency are actually larger than those achieved by cancelling the amplitude of the
volumetric mode of a rigid tile. Although this method will tend to increase the vibration
level, the resulting reductions in radiation efficiency more than compensate for this
increase. The sound power radiation from a surface vibrating in the third structural mode
of a simply supported beam before and after control using both tiles and acoustic sources
is shown in Figure 19. The method of volume velocity compensation by using compact
sources achieves better attenuation in both the first and second regions of control. For the
results shown here the secondary sources are a quarter the length of each tile. If they are
made even smaller then slight improvements in attenuation are possible but these are not
significant. Small sources tend to produce higher levels of high wavenumbers but also tend
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Figure 18. (a) The radiation efficiency of the third structural mode of the beam before (solid line) and after
(dashed line) control when using eight secondary sources which compensate for the local volume velocity; (b)
also repeated for reference are the wavenumber spectra of the beam’s velocity before (solid line) and after (dashed
line) control. The dotted lines at 3p and 13p show the separation between control regions.

to match the original wavenumber spectrum more accurately in the low wavenumber
region.

4. CONCLUSIONS

The sound power radiation from a vibrating structure is the product of the integrated
time averaged surface velocity squared (vibration level) and the radiation efficiency times
the characteristic impedance of the fluid. By covering a surface with a number of rigid tiles
which actively cancel their local volume velocity (which effectively means cancelling the
velocity at the centre of the tile), both the vibration level and the radiation efficiency can
be reduced.

Figure 19. The second power radiation from the third structural mode of a simply supported beam before
(solid line), after control when using eight tiles (dashed line) and after control when using eight small acoustic
sources (dash–dot line) which compensate for local volume velocity. The dotted lines at 3p and 13p show the
separation between control regions.
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Reductions in vibration will be dependent solely on the number of tiles per structural
wavelength. If the tiles act to cancel their own volume velocity without affecting the other
modes of vibration, then approximately 15nm tiles will be required to reduce the vibration
by a 10 dB on a simply supported plate, vibrating in the (n, m) mode.

A frequency domain approach to aliasing, normally due to temporal sampling, has been
shown to be very useful in a wavenumber analysis of the radiation of sound from a
spatially sampled structure such as a tiled panel. Reductions in radiation efficiency have
been shown to fall into three regions in the wavenumber domain. For the (n, m) mode on
a plate of dimensions Lx by Ly , the first region is below the main peak in the wavenumber
domain at k=z(np/Lx )2 + (mp/Ly )2. If the acoustic wavenumber ka lies below this
wavenumber then large reductions in efficiency can be achieved as long as there are at least
two tiles per structural wavelength. In the second region, where the acoustic wavenumber
lies between the main peak and the first aliased peak in the wavenumber domain, smaller
reductions in radiation efficiency are possible. The wavenumber about which aliasing
occurs is inversely proportional to the size of the tiles so that smaller tiles equate to higher
aliasing wavenumbers. Therefore, by making the tiles smaller, the second region of control
will be extended and increased reductions in radiation efficiency will be achieved. The third
region starts when the acoustic wavenumber is larger than the wavenumber of the first
main aliased peak and in this section no reductions in radiation efficiency can be expected.

It has also been shown that if small acoustic sources, which compensate for the local
volume velocity, are used instead of tiles which cover the entire surface, even larger
attenuations in radiation efficiency can be achieved. Compensation for the net volume
velocity will tend to increase the vibration level, but overall the strongest effect is due to
reduced radiation efficiency. The three regions of control are the same as for the above
case and hence the conditions for good attenuation are the same.

From these results it can be concluded that if the acoustic wavelength is much larger
than the structural wavelength then only two tiles per structural wavelength are necessary
to achieve good control. This control is obtained by placing an extra zero in the
wavenumber spectrum at k=0. If the acoustic wavelength is smaller than the structural
wavelength but still large compared to the size of the tiles, i.e., in the second region of
control, then reductions in sound power radiation, due to a reduction in squared velocity
and reductions in radiation efficiency, can be achieved. Therefore, if the acoustic
wavelength is much smaller than the structural wavelength then the tiles must be
significantly smaller than the acoustic wavelength to achieve a reduction in radiation
efficiency (i.e., ka Q 2p/L). The main mechanism of control when the acoustic wavelength
is much smaller than the dimensions of the tiles is likely to be vibration reduction.
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